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ABSTRACT

Assembling training data for deep generative models requires extensive effort,
and practical datasets often suffer from imbalanced or biased data collection.
Drawing inspiration from self-supervised learning, we introduce a novel boot-
strapping approach for training generative models. Specifically, we construct syn-
thetic datasets by combining generated samples from previous iterations with real
data. Our empirical results demonstrate the potential for performance improve-
ment through bootstrapping diffusion models. By recycling samples over succes-
sive generations, this technique reduces the dependence on large curated datasets
while producing varied outputs. Our proposed bootstrapping regimen presents a
promising direction for efficient and effective training of deep generative models.

1 INTRODUCTION

Generative modeling has become a pivotal area within computer vision research. These powerful
models can synthesize highly realistic images, video, and other media that closely match the statis-
tics of real-world data. As generative techniques continue to advance, they are unlocking new capa-
bilities in content creation, image editing, and more. In particular GAN models (Goodfellow et al.,
2014; Karras et al., 2018; Pan et al., 2023) can generate high-resolution photographic images with
an extraordinary level of detail. Video synthesis models like MoCoGAN (Tulyakov et al., 2017) and
TGANV2 (Saito et al., 2020) create flowing, believable video sequences that mimic complex spatial
and temporal patterns. Diffusion models such as DDPM (Ho et al., 2016; 2020) and Latent Diffusion
(Rombach et al., 2022) rapidly produce images rivaling GANs in quality. Transformers like DALL-
E (Ramesh et al., 2021) and Imagen (Saharia et al., 2022) demonstrate remarkable proficiency at
text-to-image generation.

Despite the success of deep generative models, they all suffer from one important limitation: gath-
ering high-quality data for training generative model can be a tedious process. As we discovered
during our last lab when building a dataset, collecting diverse images at sufficient resolution and
appropriately sized for the model input requires considerable time and effort. This challenge of as-
sembling robust training data also extends to real-world dataset construction. Carefully compiling a
varied and representative dataset demands meticulous attention to detail (Russakovsky et al., 2015;
Dittmer et al., 2023). And many datasets are often subjected to imbalanced or biased collection due
to various constraints (Melhem et al., 2023; Utyamishev & Partin-Vaisband, 2019).

If we want to train the deep generative model in a sample-efficient manner without harming the
performance, then one challenge is to ensure the training data contains enough diversity. This natu-
rally gives rise to a class techniques called Data Augmentation. Traditional solutions include adding
rotations (Gidaris et al., 2018), colorizations (Zhang et al., 2016) and distortions (Dosovitskiy et al.,
2015) etc. These techniques have been widely integrated in the training process of modern deep
generative models (Radford et al., 2016; Ho et al., 2016; 2020) to add diversity in the model train-
ing.

However, one limitation of these traditional data aggregation methods is their lack of generaliz-
ability. In theory, deep generative models assume training data is independently sampled from the
real-world distribution. But regardless of rotations, colorization, or distortions applied, all aggre-
gated data still originates from the same source images and remains highly correlated. As a result,
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Algorithm 1 Bootstrap Diffusion

1: Input: Original dataset D!, bootstrap iterations Z.
2: fori=1inZ do

3: P <DIFFUSION(D?).

4 DL+ DUP.

5: end for

the underlying problems of imbalanced or inadequate training data persist. Though data augmenta-
tion expands the number of samples, it does not truly enhance the diversity or breadth of the training
set. These standard aggregation techniques alone cannot solve the core issue of limited real-world
data coverage.

Stepping back, we can view these traditional data augmentation techniques from a high-level per-
spective. The ultimate goal in training a generative model is to approximate the true real-world data
distribution (Goodfellow et al., 2014; Kingma & Welling, 2022; Ho et al., 2020). This requires gen-
eralizing beyond the training data - which is precisely where augmentation struggles. For instance,
when training an image diffusion model, we can assume the model has attained some generalization
capability after initial training. We can then feed generated images back into the original dataset
to create a synthetic dataset for further training. Critically, this new dataset should exhibit greater
diversity, as its samples are drawn independently from the model’s distinct distribution. The entire
process forms a bootstrapping/self-supervised loop, as depicted in . By
recycling samples over successive generations, we continually expand the breadth and variety of our
training data. And inspired by this observation, we raise the following research question:

Can we train Generative models in a bootstrap manner as self-supervised learning?

Fortunately, our paper provides a promising answer to this question through empirical experiments.
Finally, we summarize the main results of our paper: 1) We provide a thorough explanation of the
theory and model-training of the state-of-the-art (SOTA) diffusion model. 2) We train both diffusion
model and traditional DCGAN model from large dataset. We compare the result of model trained by
these two prevailing models. 3) We leverage synthetic data generated by the model training and train
our Diffusion/GAN model in a bootstrap manner. We compare the results with the model trained
with pure real-world data.

2 RELATED WORK

Generative Adversarial Nets First proposed in 2014 (Goodfellow et al., 2014), the Generative
Adversarial Nets (GAN) has emerged as a powerful framework for generating synthetic data that
exhibits high fidelity and realism. An extension of GAN is Deep Convolutional Generative Adver-
sarial Networks (DCGAN) (Radford et al., 2016), which applies deep convolutional neural networks
(DCNN). It turns out that DCGAN is effective in various image synthesis tasks. Later video synthe-
sis models like MoCoGAN (Tulyakov et al., 2017) and TGANv2 (Saito et al., 2020) are introduced
to create flowing, believable video sequences that mimic complex spatial and temporal patterns.
Recently, Pan et al. (2023) further enpowers interactive manipulation on the generative images.

Diffusion Models The concept of diffusion models was introduced by Ho et al. (2016) in their
paper. The application was extended in another paper (Ho et al., 2020) from diffusion models
to image generation, resulting in new models called "Denoising Diffusion Probabilistic Models”
(DDPM). Rombach et al. (2022) runs the diffusion process in the latent space instead of pixel space,
making training cost lower and inference speed faster. Nichol & Dhariwal (2021) enables generate
samples conditioned on class labels or a piece of descriptive text. Xu et al. (2022) introduces a
physical process called “Poisson flow” to substitute the original theomdynamic process and becomes
the more prevailing diffusion model recent days.

Self-supervised Learning The idea of bootstrapping is related to self-supervised learning. The
concept of self-supervised learning first discussed back in 1989 in Schmidhuber (1990), and this
term is used to cover a related approach, which is using one modality as labels for another, as
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in de Sa (1994) which uses audio data as labels, and video data as predictors. In general, self-
supervised learning uses raw data to automatically generated labelled data, rather than relies on
external labels provided by humans. In computer vision, successful approaches include colorization
by Zhang et al. (2016); Larsson et al. (2017); Vondrick et al. (2018), placing image patches in the
right place by Noroozi & Favaro (2017); Doersch et al. (2016), inpainting by Pathak et al. (2016),
and so on.

Extending the deterministic algorithm to label data in self-supervised learning into machine learning
algorithm with the goal of data augmentation remaining the same results in the idea of bootstrapping.

Synthetic Dataset Using Generative Models Data augmentation through generative Al has be-
come widespread lately as deep generative models like Diffusion (Ho et al., 2020; Nichol & Dhari-
wal, 2021; Rombach et al., 2022; Xu et al., 2022) and GANs (Goodfellow et al., 2014; Radford
et al., 2016) have advanced. Saragih & Tyrrell (2023); Bowles et al. (2018) applied augmented
data generated by GAN to facilitate the training of image segmentation and observed improvement
in performance. Voetman et al. (2023) leveraged a Diffusion model to synthesize training data that
improved sample efficiency for detection tasks. Azizi et al. (2023); Nguyen et al. (2023) used text-to-
image stable diffusion model to generate synthetic data for semantic segmentation. They managed
to eliminate the need for labor-intensive pixel-wise annotation and obtained superior performance.
Zhu et al. (2023) proposed multiple techniques with diffusion models that enable more sample ef-
ficient training in reinforcement learning settings. Unlike previous work, we focus more closely on
the fundamental question of whether synthetic datasets can actually enhance the training process for
generative Al itself.

3 BACKGROUND

3.1 SYNTHETIC DATA

Synthetic data is information that’s artificially generated rather than produced by real-world events.
Data is one of the fundamental elements in machine learning, and thus advances machine learning
make in recent years are largely due to availability of big data. The problem is that finding enough
data for machine learning algorithms in some domains or situations is difficult. Even though data
are currently generated in huge amounts than before, in many cases data may fall short due to
privacy, national security, or sarcity, which hinders our ability to benefit from using machine learning
algorithms.

Traditional synthetic method includes stimulation by combining deterministic algorithm and random
noises. In recent years, as the generative models become available and mature, using generative
models to synthesize data becomes possible.

3.2 DENOISING DIFFUSION PROBABILISTIC MODELS

DDPMs (Ho et al., 2020), a category of generative models, define latent variables z1,...,zyN in
the same dimension as the data zo ~ g(x). Diffusion models consist of both a forward diffusion
process and a backward denoising process. The forward process corrupts the original data xg by
iteratively adding random Gaussian noise, following a predetermined noise schedule for /V diffusion
steps, until the distribution of xr is likely to resemble random Gaussian noise:

N

q(@ilwi1) = Nz /1= B, Bil)q(zrnlzo) = [ [ a(welwe1) (1

t=1

where f3;,4 € [N] is the random noise produced by a scheduler that converts the data distribution
x( into latent x . The choise of the noise scheduler has been shown to have important effects an
sampling efficiency and quality. In our experiment, we choose to use linear scheduler for the sake of
image sizes. When increasing the image size, the optimal noise scheduling shifts towards a noisier
one due to increased redundancy in pixels. Simply scaling the input data by a factor of b while
keeping the noise schedule function fixed is a good strategy (equivalent to shifting the log SNR by
log b).
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Algorithm 1 Training Algorithm 2 Sampling
I: repeat I: xz ~ N(0,T)
2: xowq(xo) 2: fort="T,...,1do
i- t~ I/{;l(l(f)orll;“({lv T 3z~ N(0,1)ift > 1,elsez =0
C e~ 7 -
5:  Take gradient descent step on 4 X1 = \/%—t (xt - \}ﬁee(xut)) + o1z
VQ||€*€0(\/(_11X0+\/1*O_£té,t)H2 5: end for
6: until converged 6: return xo

Figure 1: Algorithm for Diffusion model

Some previous work proposes the improved DDPM (Nichol & Dhariwal, 2021), and show that it
can also achieve competitive logarithmic likelihood while maintaining high sample quality. Thus
we adopt this model as we basic framework. In addition, using such an improved DDPM, the
learning variance of the reverse diffusion process allows for sampling with orders of magnitude less,
while the difference in sample quality is negligible, which is important for the practical deployment
of these models. Furthermore, the sample mass and likelihood of these models scale smoothly with
model capacity and training calculations, making them easy to scale.

3.3 RESULT

We trained Diffusion models on 22000 images from ffhqg-dataset [Acknowledgements-
https://github.com/NVlabs/ffhq-dataset] and got quite impressive results

4 METHOD

Data synthesis using generative models has two types: bootstrapping and ability transfer. Bootstrap-
ping uses generated images by the generative model to augment itself, while ability transfer uses
one generative model to help another.

Ability transfer uses a well-trained and large-scale model to high-quality generate images to augment
a rather small data set used by another small-scale model. This method is intuitively positive as the
augmented data set will bring the model higher convergence rate and better performance. We uses a
toy example “Diffusion for GAN” in 5.3

Bootstrapping may have positive or negative results, since augmentation of the data set from gen-
erated images of the same model results in improvement in data quantity and deterioration in data
quality. Intuitively, this method is negative in case of small-scale models and small data set, since
the quality of generated images is so worse than quality of real images, that decrease in quality
dominates increase in quantity. We will use a toy example "GAN for GAN” in 5.1 to illustrate this
intuition.

However, when using boostrapping in in well-trained and large-scale models, the result will need
real experiments to validate since the quality of generated images is so good that the increase in
quantity becomes worth trading-off with the decrease in quanlity. We implement a large-scale and
well-trained diffusion model “Diffusion for Diffusion” with the most advanced arithecture and opti-
mization skills to find the answer.

4.1 TOY EXAMPLE FOR BOOTSTRAPPING: GAN FOR GAN

We show a toy example for bootstrapping by applying this technique to a GAN model, where the
original GAN is trained upon 100 real bottle images, while the augmented GAN is train upon 100
real bottle image plus 64 fake bottle images. Each of the models is trained for a 450-epoch period.
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Generator and Discriminator Loss During Training Generator and Discriminator Loss During Training
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Figure 4: images by original GAN Figure 5: images by augmented GAN

As we can see in the local function, the model takes a faster leap out of the local optima, hence
the time of convergence is reduced. This indicates that the bootstrapping technique has produced a
positive impact on the efficiency of the model.

4.2 REAL IMPLEMENTATION OF BOOTSTRAPPING: DIFFUSION FOR DIFFUSION

As we all know, data is crucially important for training a model in the computer vision area. There-
fore, we came up with the idea of using fake pictures to enlarge our dataset. However, assessing
the quality of pictures generated by different models poses a challenge. One approach is to rely
on humans to judge and rate the images based on various criteria, such as realism, diversity, and
relevance. However, achieving fairness in human evaluations is difficult, and finding a sufficient
number of people to rate our pictures is also a challenge.

Although many researchers have proposed methods for quantitatively and scientifically assessing
the quality of generated images (Liu et al. (2017), Bianco et al. (2017)), to better align with our
course, we decided to use a GAN model for evaluation.

Full details of experiments are showed in Section 6.

4.3 TOY EXAMPLE FOR ABILITY TRANSFER: DIFFUSION FOR GAN

Regarding the current imbalance of computing power, ability transfer from well-trained and large
scale models to the less-trained and small scale models is of great value. One direct is to use
generative power of well-trained models to strengthen the data set of individual trainers. In this way,
we can exploit the knowledge of well-trained models while preserving its private parameters secure.

In some application scenarios, the data maybe highly sensitive and related to privacy, and thus hard
to collect for individual model trainers, while some certain companies may be granted for access to
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large data set and have high-quality well-trained generative models. The generated data from these
well-trained generative models are normally irrelevant to personal information, and thus can be used
as a good resource for individual model trainers.

We use 100 images generated by the well-trained diffusion model to augment the original data set
which consists of 100 real human face images.

Generat tor and Loss During Training Generator and Discriminator Loss During Training

Figure 6: loss function of original GAN Figure 7: loss function of augmented GAN

Figure 8: images by original GAN Figure 9: images by augmented GAN

The loss functions show that though the augmented model takes slightly longer time to converge,
the loss of augmented generator remains lower and more stable than the original generator, which
also corresponds to the sample generated images.

5 EXPERIMENTS OF DIFFUSION FOR DIFFUSION

5.1 DATASET

We use the open-source dataset ffhq-dataset [Acknowledgements-https://github.com/NVlabs/ffhq-
dataset]. To be more precisely, we extract 22000 images with image size 128x128 to be our baseline
dataset. After training the baseline diffusion, we sample 30% of the original dataset, i.e., 6600
images. Then we construct our new datasets as follows:

1. 70% of original dataset
2. 70% of original dataset + 30% of diffusion samples
3. Original dataset + 30% of diffusion samples
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Figure 10: Framework.

5.2 IMPLEMENTATION DETAILS

The code was tested on an RTX4090ti 24GB, with 1000 diffusion steps, 64 channels, 3 residual
blocks, linear noise scheduler, and le-4 learning rate. To get a better convergence, we trained
210000 steps for each checkpoint respectively. While the GAN model was trained on 100% of the
original dataset with 100 epochs. The results of the training results on different datasets are shown
as follows:

Figure 11: 70% of original Figure 12: 100% of original Figure 13: 70% original+30%
dataset dataset samples

Figure 14: Figure 15: real images from Figure 16: GAN’s result from
100%original+30%samples  dataset original dataset
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5.3 EVALUATION

Here, we use only the discriminator from the GAN model as the assessment method. For each input
picture, the discriminator outputs a number in the range of [0, 1] as the probability of the image being
areal picture. In practice, we have each model generate 100 pictures as inputs for the discriminator.
Subsequently, we obtain a tensor with size 100 x 1. The assessment of the model’s performance is
determined by taking the average of these values.

For a more comprehensive comparison, we also include the evaluation of real images alongside
those generated by the GAN. However, since the Discriminator is trained simultaneously with the
Generator, solely using the Generator to produce images might lead to bias. To mitigate this issue,
we use the generator from another GAN model to address this problem, more specifically, we trained
another GAN model for 100 epochs with exactly the same hyperparameters, except for a different
random seed. The results are shown as follows:

training data 70% original 70% original+30% samples | 100% original
evaluating 0.0971+ 0.1527 0.1066+ 0.1619 0.1107+ 0.1656

training data | 100 % original+30% samples real images GAN on original
evaluating 0.1205+ 0.1794 0.9894+ 0.0219 0.0481+ 0.1073

Table 1: Assessment of different models

5.4 RESULT

Our findings indicate that incorporating images generated by the Diffusion model can indeed en-
hance the model’s performance. Combining 70% original data with 30% ’fake’ images results in
improved performance compared to using only 70% original data. Similarly, combining 100% orig-
inal data with 30% ’fake’ images demonstrates better performance than using 100% original data
alone.

6 CONCLUSION AND DISCUSSION

6.1 CONCLUSION

We give an affirmative answer to the question raised at the beginning: generative model can boot-
strap itself to deepen its understanding of the world. In a broader sense, we validate the power of
generative models in data synthesis using three experiments.

6.2 FURTHER WORK

While we have demonstrated the potential utility of Bootstrapping in expanding the dataset, it is
crucial to acknowledge the limitations of our evaluation process. Relying solely on GANs for as-
sessment may not be the most comprehensive or convincing approach. Moreover, determining the
boundaries of Bootstrapping remains an unresolved challenge. Further exploration and refinement
of evaluation methods are necessary to provide a more robust understanding of the technique’s ef-
fectiveness.
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