Machine Learning Final Project

Author: Kr.Cen E¥n &

Student ID: 521021910151

Date: 2023.6.06

Hint: This is a report for CS3308 Machine Learning final project

You can reach my codes by https://github.com/Kr-Panghu/ML_FinalProject, where | presented the
codes and the results in jupyter notebook. Both two parts use Pytorch framework instead of
Tensorflow framework.

Part1: Fashion-MNIST clothing classification

For this part, | use the data fashion-MNIST (data_required_opt1.zip on canvas). You can reach the
codes in /data_required_opt1/FashionNet.ipynb

The DNN designed on my own, | called it FashionNet.

The shape of the data:

X train: (60000, 1, 32, 32)
Y train: (60000,)

X test: (10000, 1, 32, 32)
Y test: (10000,)

class FashionNet(nn.Module):
def init (self):

super (FashionNet, self)._ init ()

self.convl nn.Conv2d(1l, 16, kernel size=3, stride=1, padding=1)
nn.ReLU()

self.bnl = nn.BatchNorm2d(16)

self.relul

self.pooll = nn.MaxPool2d(kernel size=2, stride=2)

self.conv2 nn.Conv2d (16, 32, kernel size=3, stride=1, padding=1)
nn.ReLU()

self.bn2 = nn.BatchNorm2d(32)

self.relu2

self.pool2 nn.MaxPool2d(kernel size=2, stride=2)

self.conv3 nn.Conv2d(32, 64, kernel size=3, stride=1, padding=1)
nn.ReLU()

self.bn3 = nn.BatchNorm2d(64)

self.relu3

self.pool3 nn.MaxPool2d(kernel size=2, stride=2)

self.conv4 nn.Conv2d(64, 128, kernel size=3, stride=1, padding=1)
nn.ReLU()

self.bn4 = nn.BatchNorm2d(128)

self.relu4

self.poold4 = nn.MaxPool2d(kernel size=2, stride=2)

https://github.com/Kr-Panghu/ML_FinalProject

self.fcl = nn.Linear(128 * 2 * 2, 256)
self.relu5 = nn.ReLU()
self.bn5 = nn.BatchNormld(256)

self.fc2 = nn.Linear (256, 128)
self.relu6é = nn.ReLU()
self.bn6é = nn.BatchNormld(128)

self.fc3 = nn.Linear(128, 10)

def forward(self, x):
x = self.convl(x)

= self.relul(x)

self.bnl(x)

Eo T]
I

= self.pooll(x)

= self.conv2(x)
= self.relu2(x)
= self.bn2(x)

XX X X

= self.pool2(x)

= self.conv3(x)
= self.relu3(x)
= self.bn3(x)

= self.pool3(x)

LT T

= self.conv4(x)
= self.relu4(x)
= self.bn4(x)

Eo T T

= self.pool4(x)

X = X.view(x.size(0), -1)
x = self.fcl(x)

x = self.relu5(x)

x = self.bn5(x)

x = self.fc2(x)

x = self.relu6b(x)

x = self.bn6(x)

x = self.fc3(x)

return x

model = FashionNet()

DNN Structure is drawn as: (Presented in multiple lines for ease of presentation. The layer at the end of the
previous line and the layer at the beginning of the next line represent the same layer)

.

) Conv1 Pool1
input <1,32,32 16,32,32 RelLU1 BNA1 16,16,16; Conv2
3x3 kernel=2
Conv2 Pool2
Ve L <32,16,16>— RelLU2 BN2 3288
3x3 kernel=2

t

Conv3 Pool3
——<64,8,8 RelLU3 BN3 —<64,4,4 Conv4
3x3 kernel=2
Conv4 Pool4
<128,4,4 RelLU4 BN4 —<128,2,2 FC1
3x3 kernel=2

FC1 FC2
<256 RelLU5 BN5 —<128 RelLU6
512x256 256x128
RelLU6 BN6 Fes 10
e outpu
128x10 i

Why | implement this architecture? This is a classical convolutional neural network, for image

H
]

classification work.
This architecture has several merits:

1. Convolutional layer and pooling layer are used alternately: convolutional layer is used to extract the
features of the image, and pooling layer is used to reduce the spatial size of the feature map and
extract higher level features. This alternating structure helps the network to abstract and represent
images at multiple levels.

2. Batch Normalization: By normalizing the input of each batch in the network, batch normalization layers
help speed up the training process of the network and can improve the robustness and generalization
ability of the network.

3. Multiple hidden layers: This network has multiple convolutional and fully connected layers, each of
which can learn a different level of feature representation. Such a design allows the network to better
understand and represent the input data and improve the classification performance.

The training results:

—— Train Loss
—— Test Loss

0.30

0.25

Loss

0.20

0.15 A

0.10 4

0.96 4 —— Train Accuracy
—— Test Accuracy

0.95

0.94 A

0.93 A

0.92

Loss

0.91 4

0.90

0.89 1

0.88 A

T

0 2 4 6 8
Epoch

The test accuracy can reach 92% at most, which is pretty good.

Intermediate Latent Visualization

Personalized PCA and t-SNE (avoid using sklearn but numpy)

Visualization

def personal pca(X, n_components):
EUEEREXAVIEIZTN
X mean = np.mean(X, axis=0)

X centered = X - X mean

BN EEMFSITENSERE
cov_matrix = np.dot(X_centered.T, X centered)

eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)

SHEEHITHR
eigenvectors = eigenvectors[:, np.argsort(-eigenvalues)]

eigenvalues = eigenvalues[np.argsort(-eigenvalues)]

EERInTMEEE

selected_eigenvectors = eigenvectors[:, :n_components]

MR HIER TS

transformed = np.dot(X_centered, selected eigenvectors)

return transformed

def personal tsne(X, n_components, perplexity=30, learning rate=200, n_iter=1000):
def compute pairwise distances(X):
sum_X = np.sum(np.square(X), axis=l)
distances = np.add(np.add(-2 * np.dot(X, X.T), sum X).T, sum X)

return distances

def compute perplexity(distances, perplexity=30):
P = np.zeros((X.shape[0], X.shape[0]))
beta = np.ones(X.shape[0])
for i in range(X.shape[0]):
FRA_PBRRITENsigmald
min_beta = None
max beta = float('inf')
for _ in range(50):
beta i = beta[i]
distances_i = distances[i, np.concatenate((np.r_[:i], np.r [i +
1:X.shape[0]]1))1]
probabilities = np.exp(-beta i * distances_i)
sum_probabilities = np.sum(probabilities)
entropy = np.log(sum probabilities) + beta i * np.sum(distances_ i *
probabilities) / sum probabilities
entropy diff = entropy - np.log(perplexity)
if np.abs(entropy diff) < le-5:
break
if entropy diff > 0:
min beta = beta i
if max beta == float('inf'):
beta[i] *= 2
else:
beta[i] = (beta[i] + max beta) / 2
else:
max_beta = beta i
if min_beta is None:
beta[i] /= 2
else:
beta[i] = (beta[i] + min beta) / 2
probabilities /= sum probabilities
P[i, np.concatenate((np.r_[:i], np.r [i + 1:X.shape[0]]))] = probabilities

return P

def compute gradient(P, Y):
num = P.shape[0]
PQ diff =P - Q
grad = np.zeros((num, n_components))
for i in range(num):

grad i = np.tile(PQ _diff[i] * inv_distances[i], (n_components, 1)).T

grad[i] = 4 * (grad_i * (Y[i] - Y)).sum(axis=0)

return grad

Wiafty

Y = np.random.randn(X.shape[0], n_components)

SRR

X = (X - np.mean(X, axis=0)) / np.std(X, axis=0)

TTHEREKEBNTS

distances = compute pairwise distances(X)

¥iaftpilo

= compute_ perplexity(distances, perplexity)
=P + P.T
P / np.sum(P)

= P * 4 # early exaggeration

v W W W o
I

= np.maximum(P, le-12)

for iter in range(n_iter):
1TEQ
inv_distances = 1 / (1 + distances)
np.fill diagonal(inv_distances, 0)
Q = inv distances / np.sum(inv_distances)

Q0 = np.maximum(Q, le-12)

TTEEE

dY = compute gradient (P, Y)

EEEY

gains = (gains + 0.2) * ((dY > 0) != (iY > 0)) + (gains * 0.8) * ((dY > 0)
(iY > 0))

gains[gains < 0.01] = 0.01

iY = learning rate * gains * dY
Y =Y - iy

I3—fty

Y = Y - np.mean(Y, axis=0)
FTEMERHE
if (iter + 1) % 100 == O0:
error = np.sum(P * np.log(P / Q))

print (f"Iteration {iter + 1}: error = {error}")

return Y

The following are visualization results:

PCA Visualization t-SNE Visualization

9
8
7
6 (o]
[=
S
5 2
(']
£
4 o
w
=
w0
3 &
2
1
T T T T T T T 0 T T T T T T T 0
—40 -20 0 20 40 60 80 100 -75 -50 -25 0 25 50 75
PC1l t-SNE Dimension 1
9 9
PCA Visualization t-SNE Visualization
8 8
7
6
5
4
3
2
kg, Y
’VED,-me 10 5 1
nSIonl 20
0 0

According to these two graphs, | tried to summarize some empirical conclusions:

1. There are some colors distinct with others. They are {1, 3, 8,9} (especially according to the results of t-
SNE visualization). This means they have distinct, unique features that make them stand out and can
be distinguished from other numbers. As you can see, for most number 1, it is just a single stroke; the
upper and lower parts of the number 8 are both a circle, etc.

2. There are some huge overlaps between some colors, like {2 A 6}, {0 A 6}, etc. We can do this
empirically: since the characters 2 and 6 have very personal handwriting characteristics, they become
similar in some aspects, which means that they become difficult to distinguish correctly. The number 6,
which also contains a circle, will also become indistinct from the number 0 if the number 6 flattens out
or if the stroke outside the circle becomes thin and short.

For reference, here is

o @

a partial image of each digit in the MNIST dataset:

00000060800
2 T T V- N VA A
A2

28N s [y
~N %g~) ealar WO N
e\ B Dy
v~ Q48P

NN Sl DN

Part2: Image Reconstruction

For this part, | use

the data simplified LFW (data_option1_opt2.zip on canvas). You can reach the codes

in /data_optional1_opt2/VAE.ipynb

VAE Model

VAE Structure:

class VAE(nn.Module):

def _ init

(self, latent dim):

super (VAE, self). init ()

self.latent dim = latent dim

Encoder layers

self.convl = nn.Conv2d(3, 16, kernel size=3, stride=2, padding=1)

self.conv2 = nn.Conv2d(16, 32, kernel size=3, stride=2, padding=1)

self.fcl

Latent

= nn.Linear(32 * 8 * 8, 256)

space layers

self.fc_mean = nn.Linear (256, latent dim)

self.fc_logvar = nn.Linear (256, latent dim)

Decoder layers

self.fc2
self.fc3

= nn.Linear(latent dim, 256)
nn.Linear (256, 32 * 8 * 8)

self.conv3 = nn.ConvTranspose2d(32,

16, kernel size=4, stride=2, padding=1)

self.conv4 = nn.ConvTranspose2d(16, 3, kernel size=4, stride=2, padding=1)

def encode(self, x):

x = F.relu(self.convl(x))

x = F.relu(self.conv2(x))
X = x.view(x.size(0), -1)
X = F.relu(self.fcl(x))

mean = self.fc mean(x)

logvar = self.fc_logvar(x)

return mean, logvar

def decode(self, z):
x = F.relu(self.fc2(z))

x = F.relu(self.fc3(x))

X = X.view(x.size(0), 32, 8, 8)
x = F.relu(self.conv3(x))

x = torch.sigmoid(self.conv4(x))
return x

def reparameterize(self, mean,

logvar):

std = torch.exp(0.5 * logvar)

epsilon = torch.randn_ like(std)

z = mean + epsilon * std

return z

def forward(self, x):

mean, logvar = self.encode(x)

z = self.reparameterize(mean,

X_recon = self.decode(z)

return x_recon, mean, logvar

logvar)

The following diagram shows the overall architecture of the VAE.

Encoder

Input Image

convi,conv2,fci

Latent Space

Decoder

fc2,fc3,conv3,conv4

Reconstructed Image

Specifically, the architecture of the model is designed as:

e Encoder:

o The inputimage is feature extracted and downsampled through convolutional layers conv1 and

conv2 to reduce the image size.

conv1: nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1)

conv2: nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1)

o The downsampled features are converted to 1D vectors using the flattening operation

X.view(x.size(0), -1).

o 1-D vectors are further transformed into 256-dimensional feature vectors by a fully connected
layer fcl.

fc1: nn.Linear(32 * 8 * 8, 256), here full connected layer takes in_features as (32,8,8), where 32 is
the number of channels 8*8 is the height and width of the feature map, 256 is dimension of
output feature.

o 256-dimensional feature vectors are passed through two fully connected layers fc_mean and
“fc_logvarto obtain the mean and variance of the latent space, respectively.

® |atent Space:

o The mean and variance of the latent space are used to randomly sample the latent vector z,
using the reparameterize function.

e Decoder:

o The latent vector z is transformed through the fully connected layer f£c2 to obtain a 256-
dimensional feature vector.

o The 256-dimensional feature vector is then transformed through the fully connected layer fc3 to
obtain a 32-channel, 8x8 feature map.

o The feature maps are upsampled and reconstructed layer by layer through deconvolution layers
conv3 and conv4 to finally obtain a reconstructed image with the same size as the original input
image.

As a whole, this VAE model maps an input image to a latent space via an encoder, and then maps the latent
vectors back to the reconstructed image via a decoder. This structure allows the model to learn a low-
dimensional representation of the data and generate new samples.

How to implement this model

Hyper-parameter setup.

EXREGESE

latent dim = 120
learning rate = 0.001
num_epochs = 500
batch_size = 32

Training process.

EIREL
total steps = len(data_loader)
for epoch in range(num_epochs):
for i, images in enumerate(data_ loader):
BIE(ERE

recon_images, mean, logvar = model(images)

ITEEMWIRENKLEE
recon_loss = criterion(recon images, images)

k1l loss = -0.5 * torch.sum(l + logvar - mean.pow(2) - logvar.exp())

TTHEEBIRK

loss = recon_loss + le-5 * kl loss

REMEBNMHA
optimizer.zero grad()
loss.backward()

optimizer.step()

FTEMYIZKIE R
if (epoch+l) % 10 == 0 and (i+l) % 10 ==
print (f"Epoch [{epoch+l}/{num epochs}], Step [{i+1l}/{total steps}], Loss:
{loss.item():.4£f}")

Here, | employ MSE loss instead of CE loss for recon_loss (I have tried both and found that the final
visualization using MSE loss is significantly better than CE loss), and the loss function is defined as:

loss = recon_loss + le-5 * kl loss

| found that if we change the KL loss weight too high, the final images generated by intermediate code will
be almost identical. So in this implementation, | decreased the KL loss weight to 107°.

Image Reconstruction

| randomly select some images from the X_train, and reconstruct the images throught the VAE model. By
comparing the original and rebuilt images, we can see the effect of the VAE model. The following is one of
the results.

It can be seen that the effect of image reconstruction is relatively good, and large color patches can be well
distinguished, but there will be an inevitable loss in sharpness, that is, the boundary of the color patch will
become blurred.

Image Reconstruction with Interpolation

Use a = [0.2,0.4,0.6,0.8], for latent code 21, 29, | rebuild image with each (1 — a)z1 + a2 as latent
code, and visualize the image by matplotlib. The following is one of the results.

image 1

Alpha: 0.2 Alpha: 0.4 Alpha: 0.6

Alpha: 0.8 image 2

Here is an interesting result: when image1 is the face of an old person and image2 is the face of a young
person, the intermediate images generated using interpolation by VAE are interesting.

	Machine Learning Final Project
	Part1: Fashion-MNIST clothing classification
	Intermediate Latent Visualization

	Part2: Image Reconstruction
	VAE Model
	How to implement this model
	Image Reconstruction
	Image Reconstruction with Interpolation

