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1 Abstract

This paper mainly refers to the paper Understanding Neural Networks and Individual
Neuron Importance via Information-Ordered Cumulative Ablation, the first of my reference
list. On the basis of this paper, I conducted an extended experiment on the MNIST dataset.

In this paper, I use information theoretic metrics for node pruning to learn the impor-
tance of individual neurons at different levels in the whole DNN. Entropy, Mutual informa-
tion and KL-Selectivity are used to determine the order of ablation. I extend the 2-layer model
adopted in the original paper to the 3-layer for more insights. When the number of hidden
layers increases, more generalized and reliable conclusions can be drawn: 1. The distribution
of the proposed metrics changes from layer to layer. 2. Hypotheses about the interactions of
neurons based on information metrics can be formulated. 3. Deeper layers may have larger re-
dundancy. 4. It is reasonable to use mutual information and KL-Selectivity as indicators
of node pruning, indicating that they are strongly correlated with the classification results, but
not strictly increase with the depth because of overfitting and important features sharing.
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2 Introduction

There are several challenges for interpretability of (deep) neural networks nowadays: 1.
How to understand NN(Neural Networks) theoretically. 2. How to understand NN function-
ality. 3. Where to find interpretability of results. Especially when neural networks have high
computational complexity, i.e., have large depth, the interpretability of DNN is hard to explain.

In traditional researches for interpretability of DNN, researchers usually try to understand
how neural networks underlie the decision making process by visualizing the semantics of
interneurons or by inferring the importance scores of the input/interneuron. However, this
traditional direction can only understand what neural networks model on the surface, but
can not explain and analyze the more essential expressive ability of neural networks. As a
result, most of the current interpretability studies cannot be used in the design and training
of feedback-guided neural networks.

In this paper, I took a different approach. I investigated the importance of individual
neurons at different levels to the prediction accuracy of the entire neural network using three
information theoretic metrics:

1. Entropy

2. Mutual Information

3. Kullback-Leibler Selectivity (which will be defined later)

To value the importance of a single neuron, it is obvious that a single point operation of the
neural network is required, and the cumulative ablation method is used in this experiment
(i.e. node pruning), the main steps of cumulative ablation:

1. Removing one or more neurons or a layer from the network. The removal can be done by
setting the weights or activations of the selected neurons or layer to zero or by excluding
them from the network architecture.

2. Evaluate the performance of the ablated network on the same task or dataset used for
training. This evaluation can involve measuring metrics such as accuracy, loss, or any
other relevant performance measure.

3 Propose Information Theory Metrics

Experiment Basics. We consider classifification via fully-connected feed-forward NNs. C
denotes classification set, where |C| = C. Dataset D = {(x1, y1), . . . , (xN , yN )}. xi denotes
the i-th input and yi denotes i-th output. Denote h

(i)
j (xl) to be the output of the j-th neuron

in i-th hidden layer if given the input xl. b denotes the bias vector. σ : R → R denotes a
non-linear activation function (usually ReLU), then we have
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h
(i)
j (xl) = σ(

∑
p

w
(i−1)
p,j h(i−1)

p (xl) + b
(i)
j ) (1)

Let Q : R → H be a quantizer that maps outputs to a finite set H. Let Y be a random
variable over the set C of classes and H

(i)
j a random variable over H, i.e., the output of the

j-th neuron of the i-th hidden layer.
Define the joint distribution of Y and H

(i)
j via the joint frequencies of {(yl, Q(h

(i)
j (xl)))}

in the validation set. ∀c ∈ C, h ∈ H,

P
Y,H

(i)
j
(c, h) =

∑N

l=1 1[yl = c,Q(h
(i)
j (xl)) = h]

N
(2)

where 1[·] is the indicator function.

Entropy. It’s a matric that quantifies the uncertainty. Denote H[·] as entropy, then

H(H
(i)
j ) = −

∑
h∈H

P
H

(i)
j
(h) logP

H
(i)
j
(h) (3)

Mutual Information. The zero entropy of neuron output indicates that it has little rela-
tionship with classification performance, but the reverse cannot be true, and the high entropy
of neuron output cannot indicate its importance in classification problem, so we introduce the
mutual information between neuron output and classification result as a measure of matric. It
measures how the knowledge of H(i)

j helps predicting Y . Its mathematical form is

I(H
(i)
j ;Y ) = H(H

(i)
j )−H(H

(i)
j |Y ) (4)

Kullback-Leibler Selectivity. For deeper neurons, its output may play a decisive role in
the classification result. Mathematically, for such a neuron there exists a class y s.t. condi-
tional distribution P

H
(i)
j |Y=y

differs significantly from the marginal distribution P
H

(i)
j

. Namely,
DKL(PH

(i)
j |Y=y

∥P
H

(i)
j
) is large (other researchers call it specifific information). We denote KL

selectivity as the maximum specific information over all classes for a measure of neuron impor-
tance, as

max
y∈C

DKL(PH
(i)
j |Y=y

∥P
H

(i)
j
) (5)

By definition, KL selectivity is high when the influence of a single neuron on the classifi-
cation result of a particular class is large.

4 Node Pruning Experiment Setup

We use a trained NN with 2 or 3 hidden layers with 200 neurons each (totally 400 or 600
neurons), and apply one-bit quatization, i.e., |T | = 2, sigmoid threshold = 0.5. For the output
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of the activation function, values less than the threshold are mapped to 0, and values greater
than or equal to the threshold are mapped to 1. For dataset, we use MNIST, a set of 28∗28 gray-
scale images. The dataset is selected and divided into 50000 training samples, 10000 validation
samples and 10000 testing samples. For loss function, we apply cross-entropy loss and L2-norm
regularization. If bias balancing is applied, its mathematical form is: w

(i)
j,k

∑
l

h
(i)
j (xl)

N
+ b

(i+1)
k .

The following are the costs and accuracy during training process, only the 3-layer neural
network model is shown here, I also generate violin plots of the corresponding metrics distri-
bution(if you need results for 2-layer, check out the github link provided at the end of the
paper)

Fig 1. Accuracy Fig 2. Cost

Fig 3. Entropy Fig 4. MI Fig 5. KL-Selectivity

5 Results and Analysis of Node Pruning

First, I test whether applying bias balancing or not has an effect on node pruning on
2-layer model, the results are:

Fig 6. Pruning nodes of 1-th layer Fig 7. Pruning nodes of 2-th layer

As for 3-layer model(test for bias balancing):
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Fig 8. Pruning 1-th layer Fig 9. Pruning 2-th layer Fig 10. Pruning 3-th layer

From these pruning results, we can conclude that with bias balancing, the overall impact
on the model is reduced and the accuracy curve flattens, which also helps to reduce the error
caused by different training results of the model (i.e. reduce the occasionality of the results).

Therefore, all our operations in the following apply bias balancing.

Layer-wise ablation. I perform layer-wise ablation to find interactions throughout the layer,
the results:

Fig 11. 1-th HVF Fig 12. 2-th HVF

Fig 13. 1-th LVF Fig 14. 2-th LVF

Here I denote HVF as high value first and LVF as low value first. For example, fig-
ure 11 represents that the neurons in the 1-th layer are pruned, and the neurons with high
corresponding metric values are strictly pruned first.
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As for 3-layer model layer-wise ablation:

Fig 15. 1-th HVF Fig 16. 2-th HVF Fig 17. 3-th HVF

Fig 18. 1-th LVF Fig 19. 2-th LVF Fig 20. 3-th LVF

Obviously, random pruning is a moderate choice regardless of the level of pruning. In
addition, the following insights can be summarized by layer-wise ablation:

Consider Mutual Information and KL-Selectivity. For shallow layers, LVF is a better
choice than HVF, which intuitively makes sense because high KL-Selecitivity and high Mu-
tual Information mean that neurons are highly correlated with classification results. But a
phenomenon appears for both 2-layer and 3-layer models: when performing pruning for the
last layer, KL-Selectivity HVF and MI HVF will be better than LVF, which is somewhat
counterintuitive. I will give explanations for this phenomenon in next section.

Another oddness is that our intuition is that pruning deeper neurons should be better
than pruning shallower.This is also counterintuitive, this might because of limitations of
information transmission, learning difficulty, and training instability.

Whole network ablation. Last of all, I perform whole network ablation to get more insights:

Fig 21. 2-layer: Ablation on whole NN Fig 22. 3-layer: Ablation on whole NN
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I find that when node pruning is performed on the whole NN, the curves of Entropy
LVF and MI LVF decrease greatly, and the corresponding inference is that entropy and MI
of neurons in shallow layers are lower than those in deep layers, while KL-selectivity is higher
than that in deep layers. And I find that the effect of random pruning is pretty good, indicating
that the whole neural network has a relatively large redundancy.

Explanation: Since shallow neurons receive raw input data or less processed data, it may
be easier for them to extract some of the salient features in the data, and thus reduce some of
the uncertainty. As a result, shallow neurons may have relatively low entropy.

6 Conclusions and Conjectures

The distribution of the proposed metrics changes from layer to layer. Generally,
deeper layers have larger values, especially mutual information and KL-Selectivity. Therefore,
it’s not reasonable for us to compare neurons at different levels for these metrics.

Formulate hypotheses about the interactions of neurons. Information theory metrics
based cumulative neuron ablation with sorting allows us to formulate hypotheses about the
interactions of neurons throughout the layer. This is a great merit of the model.

Deeper layers may have larger redundancy. Although the unexpected result of ablation
of neurons in 2-th layer was the worst in the 3-layer experiment, in general, the effect of
ablation in the last layer on the performance of the neural network in both two experiments
is small. And is much smaller than the previous layers, which shows deeper layers have larger
redundancy, but this redundancy does not strictly increase with the increase of depth.

The correlation between metrics considered and neurons has dependency. The
correlation between the considered metrics and neuron importance depends on the depth and
structure of the considered layer, and on the NN architecture as a whole.

Explanations of the counterintuitive phenomenon presented in the previous sec-
tion. Namely, the unnatural results of HVF/LVF for KL-Selectivity and MI.

Possible explanations are: 1. Overfitting problem. Neurons with high KL-Selectivity
often play an important role in the classification result of a particular class, but this does
not mean that they are better for generalization. In some cases, these neurons with high
KL-Selectivity may focus too much on noise or redundant features, causing the network to
overfit. 2. Sharing important features. In DNN, the abstraction level of features gradually
increases as the NN propagates forward. In the last layer, neurons may focus more on the
decision contribution to the overall classification result rather than individual classes. Neurons
with high KL-Selectivity may have a large impact on the classification of a particular class,
but other neurons may have learned similar important features as well.
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Here I attach some important codes for better understanding. As for the experiments
details, neural network setting, pruning method and etc, you can reach the codes directly on
my github repository https://github.com/Kr-Panghu/UNN-on-MNIST.

DNN Definition. The following is the definition of my 3-layer neural network.

1 # 3 hidden layer DNN
2 class DNN(nn.Module):
3 def __init__(self):
4 super(DNN, self).__init__()
5 # defining fully connected layers
6 self .fc1 = nn.Linear(784, 200)
7 self .fc2 = nn.Linear(200, 200)
8 self .fc3 = nn.Linear(200, 200) # 3 hidden layer
9 self .fc4 = nn.Linear(200,10)

10

11 def forward(self, x):
12 # flatten the input to (batchsize, 28 ∗ 28)

13 x = x.view(x.size(0), −1)
14 x = torch.sigmoid(self.fc1(x))
15 x = torch.sigmoid(self.fc2(x))
16 x = torch.sigmoid(self.fc3(x))
17 output = self.fc4(x)
18 return output

Layer-wise node pruning. The following is the codes for LVF node pruning of 3-th layer
of 3-layer model.

1 # Low Value First
2

3 # Random Pruning
4 random_bias_performances = []
5 for n_abl in tqdm(range(80)):
6 random_idx = np.random.choice(np.arange(200), size= n_abl+1, replace = False) + 400
7 random_idx = torch.from_numpy(random_idx).cuda()
8 mask2 = torch.ones((600,1), device='cuda')
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9 p_cuda = p.cuda()
10 mask2[random_idx,0] = torch.index_select(p_cuda, 0, random_idx)[:,1]
11 random_bias_performances.append(cal_performance(Net, test_loader, mask2))
12

13 # Mutual information as the metric
14 MI_bias_performances = []
15 for n_abl in tqdm(range(80)):
16 idx = torch.topk(MI_3st, n_abl+1 , dim= 0, largest = False)[1].squeeze(−1) + 400
17 mask2 = torch.ones((600,1), device='cuda')
18 p_cuda = p.cuda()
19 mask2[idx,0] = torch.index_select(p_cuda, 0, idx)[:,1]
20 MI_bias_performances.append(cal_performance(Net, test_loader, mask2))
21

22 # KL-Selectivity as the metric
23 KL_bias_performances = []
24 for n_abl in tqdm(range(80)):
25 idx = torch.topk(KL_sel_3st, n_abl+1 , dim= 0, largest = False )[1].squeeze(−1)+ 400
26 mask2 = torch.ones((600,1), device='cuda')
27 p_cuda = p.cuda()
28 mask2[idx,0] = torch.index_select(p_cuda, 0, idx)[:,1]
29 KL_bias_performances.append(cal_performance(Net, test_loader, mask2))
30

31 # Entropy as the metric
32 Entropy_bias_performances = []
33 for n_abl in tqdm(range(80)):
34 idx = torch.topk(Entropy_3st, n_abl+1 , dim= 0, largest = False)[1].squeeze(−1) + 400
35 mask2 = torch.ones((600,1), device='cuda')
36 p_cuda = p.cuda()
37 mask2[idx,0] = torch.index_select(p_cuda, 0, idx)[:,1]
38 Entropy_bias_performances.append(cal_performance(Net, test_loader, mask2))
39

40 # Visualization
41 plt.plot(random_bias_performances)
42 plt.plot(MI_bias_performances)
43 plt.plot(KL_bias_performances)
44 plt.plot(Entropy_bias_performances)
45 plt. title ("Third Layer, Low values")
46 plt.ylabel('Accuracy')
47 plt.xlabel('Number of pruned nodes')
48 plt.legend(labels = ["random", "Mutual information", "KL", "Entropy"])
49 plt.show()


