LayerT2V: Interactive Multi-Object Trajectory Layering for Video Generation
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Figure 1. Layered video generation process. Given a long complex prompt and conditional motion trajectories, LayerT2V first exploits
the base model to generate the background (BG) video, then generates foreground (FG) subjects layer by layer with our carefully designed
Layer-Customized Module to control their motion trajectories. The newly generated layer will be conditioned on all the previous output

layers, ensuring excellent harmony and consistency between layers.

Abstract

Controlling object motion trajectories in Text-to-Video
(T2V) generation is a challenging and relatively under-
explored area, particularly in scenarios involving multiple
moving objects. Most community models and datasets in
the T2V domain are designed for single-object motion, lim-
iting the performance of current generative models in multi-
object tasks. Additionally, existing motion control methods
in T2V either lack support for multi-object motion scenes
or experience severe performance degradation when object
trajectories intersect, primarily due to the semantic con-
flicts in colliding regions. To address these limitations, we
introduce LayerT2V, the first approach for generating video
by compositing background and foreground objects layer by
layer. This layered generation enables flexible integration of

multiple independent elements within a video, positioning
each element on a distinct “layer” and thus facilitating co-
herent multi-object synthesis while enhancing control over
the generation process. Extensive experiments demonstrate
the superiority of LayerT2V in generating complex multi-
object scenarios, showcasing 1.4x and 4.5 X improvements
in mloU and AP50 metrics over state-of-the-art (SOTA)
methods. Project page and code are available at https :
//kr—-panghu.github.io/LayerT2V/.

1. Introduction

Text-to-Video (T2V) generation has achieved remarkable
success in producing diverse, realistic, and high-quality
videos through prompt conditioning. A significant factor
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contributing to this advancement is the development of La-
tent Diffusion Models [35], which enable efficient computa-
tion in a lower-dimensional latent space and generate high-
quality videos by retaining key features while allowing for
flexible control over the generation process.

Recently, numerous researchers have focused on cus-
tomizing generated video content, including camera move-
ments [2, 17, 19, 25], object motions [20, 24, 31,46, 51, 55]
and transformations [48], and identity preservation [13, 22,
44, 49]. Compared to image generation, the core aspect of
video generation lies in its intrinsic motion across frames.
Thus, controlling object motion trajectories is a critical
component in customized video generation. Some training-
based methods learn the trajectory of the object through
massive object-trajectory pairs [46], or learn a particular
type of motion through several reference videos [48, 55].
On the other hand, tuning-free methods usually put ef-
forts into manipulating attention mechanisms [20, 24, 51] or
noise resampling [31] to achieve object motion control, uti-
lizing the inherent priors of pretrained T2V models. These
methods primarily address the generation of single-object
scenes. However, it is worth noting that with the devel-
opment of customized T2V models, the demand for multi-
object control scenarios is steadily increasing. Although ex-
isting models demonstrate strong capabilities in controlling
object motion, few of them are dedicated to the generation
and customization of multi-object scenes, thus lacking sup-
port for more complex user-defined control and multi-object
motion personalization.

The primary challenge these models encounter in multi-
object scenarios is the collision of motion trajectories
among objects. This precipitates semantic conflicts in the
same region, where a single pixel is conditioned on multiple
foreground object prompts. Achieving a solution through
training would require a large-scale dataset encompassing
complex prompts, multiple object trajectories, and videos.
While tuning-free methods also fail to resolve the bottle-
neck of a pixel being conditioned on multiple foregrounds.
A straightforward solution might be to introduce depth in-
formation, but rendering a sequence of depth maps that cap-
ture the motion of multiple objects is extremely cumber-
some and not user-friendly.

Inspired by these issues, we are curious whether it is
possible to resolve motion conflicts in multi-object scenes
through simple control inputs, such as bounding boxes
(bboxes) or point trajectories. To address this, we propose
LayerT2V, the first approach that generates video frames in
layers. As illustrated in Figure 1, we start by generating
the background layer and then progressively generate fore-
ground layers. Each generated layer represents a portion
of the prompt with complete semantics. Ultimately, these
video layers are stacked together, with the later-generated
layers occluding the information from the earlier ones. This

approach inherently resolves the issue of motion trajectory
conflicts between multiple objects.

Furthermore, we carefully design a Layer-Customized
Module, which incorporates the guided cross-attention, ori-
ented attention sharing, and attention isolation, to control
the motion trajectory of the generated layer and towards
a harmonious blending with the previously generated lay-
ers. Moreover, we observe that as the number of fore-
ground layers increases, if the newly generated foreground
is fully conditioned on all previously generated layers, it
will trigger a redundant consistency issue between multi-
ple foregrounds, leading to integration between foreground
objects. To overcome this obstacle, we propose a Harmony-
Consistency Bridge, dividing the conditioning process into
two stages and resolving the redundant consistency issue
between foregrounds.

In summary, our contributions are as follows:

* To the best of our knowledge, LayerT2V is the first T2V
method from the perspective of video layering and the
first to address semantic conflicts caused by colliding
multi-object motion trajectories.

* To address semantic conflicts in multi-object scenarios,
we propose a Layer-Customized Module and a Harmony-
Consistency Bridge. These modules collectively facilitate
the flexible integration of multiple independent objects,
effectively handling multi-object generation while main-
taining harmony and consistency across layers.

* We conduct extensive experiments to demonstrate the su-
periority of LayerT2V over SOTA models both qualita-
tively and quantitatively, showcasing 1.4-fold and 4.5-
fold improvements in the mloU and AP50 metrics.

2. Related Works

2.1. Text-to-Vision Generation

Text-to-Image (T2I) model enables the automatic synthe-
sis of images from textual descriptions [29, 34, 39] using
text embedding model such as CLIP [32]. The performance
of T2I models has been significantly enhanced by the intro-
duction of Latent Diffusion Models [35]. This advancement
has drawn considerable attention to image customization,
with approaches like ControlNet [54] and T2I-Adapter [27]
offering enhanced control. Other methods focus on main-
taining certain identities [36, 38] or controlling layout in
image synthesis [15, 21]. The most recent LayerDiffusion
presented by Zhang et al. [53] adjusts the latent distribu-
tion of pretrained models to support “latent transparency”
by training LoRAs [18], showing ability in structured con-
tent synthesis like background conditioned generation.
Building on this foundation, Text-to-Video (T2V) gen-
eration extends the challenge by requiring not only spa-
tial but also temporal coherence. Several works such as
[10, 12, 14, 16, 42, 50] show methods that build on top



Method Cond Both MultiObj Colliding
Type MT&ST Motion Motion

Wang et al. [46] Point v

Yin et al. [52] Point v v

Jain et al. [20] Bbox v

Yang et al. [51] Bbox v v

Ma et al. [24] Bbox (4 v

Qiuetal. [31] Bbox v

Ours Bbox %4 %4 ['4

Table 1. Comparison to previous works. Here “MT” and “ST”
stand for moving trajectory control and static trajectory control.

of image diffusion models. [4, 23, 40] introduce 3D con-
volutional layers in the denoising UNet to learn temporal
information. Recent T2V models draw inspiration from la-
tent diffusion [35] and operate in a lower-dimensional and
more compact latent space to reduce computational com-
plexity. [3] utilizes curated training data and is capable of
generating high-quality videos.

2.2. Controllable Motion in Video Generation

As the capabilities of video generation models continue
to improve, some outstanding works for controlling ob-
ject movement have emerged in the community. [48, 55]
are trained by employing reference videos for motion cus-
tomization. However, if we follow the idea of these works
for complex multi-object scenarios, it is difficult to obtain
an appropriate reference video dataset for training. Plus, it
restricts the generated content greatly to the existing videos
and leads to insufficient generation freedom. [45] lever-
ages the motion vectors extracted from compressed videos
as a direct control signal to impart direction over tempo-
ral dynamics, but it needs a compositional depth sequence
to control plural objects, which is hugely labor-intensive.
[46] encodes the movement paths of objects into a vector
field, but it fails to manipulate obstacle trajectories since it
directly merges different trajectories into one as a control
signal. [20, 24, 31, 47, 51] probe into tuning-free methods
by guided attention maps injection, but they failed to control
multi-object scenario when the objects collided in a particu-
lar area. This is mainly because, in the cross-attention map,
the semantic conflict of the coincident region reinforces the
attention to different objects at the same time, leading to the
deterioration of the generated results.

Different from these models, our LayerT2V focuses on
synthesizing one video layer with a single object at one
time, then blends them together into the output video to en-
able multi-object synthesis. In this way, we naturally re-
solve the conflicts between guided attention map injection
and our objective: During the layer generation process, the
cross-attention map is modified without distraction because
we focus on only one foreground prompt at a time.

3. Methodology

3.1. Preliminaries: Video Diffusion Models

The Latent Diffusion Model (LDM) [35] aims to generate
high-quality and diverse images and operate the diffusion
process within a latent space to achieve computational effi-
ciency. The most widely used model in the community is
Stable Diffusion, which consists of two main components:
an image Variational Auto-Encoder (VAE) that converts im-
age representations into and back from a latent space and a
denoising UNet that iteratively processes the noisy latent to
predict the noise. Some LDM-based video generation meth-
ods pass noisy latents through a UNet Uy parametrized by
0 to iteratively denoise them, then utilize an image VAE to
sequentially decode each latent into an image (i.e., video
frame). Denoting the number of iterative denoising steps
as T', the process begins with noisy latents x(7) and pro-
gresses to clean latents x g for the VAE decoder. For text-
driven generation, the denoising process at time step ¢ can
be formulated as

x@—1) = Us(X(), €), )
where c is the prompt embeddings.

3.2. LayerT2V

Overall pipeline. Our overall pipeline is illustrated in Fig-
ure 2 where we perform the foreground generation above
a pre-generated background. The background video layer
is initially processed through control convolutions and then
integrated into latents to support background-to-foreground
conditioned generation. For foreground motion control,
users specify bbox sequences with foreground prompts
which are processed by Layer-Customized Module to en-
sure precise motion control and seamless blending. After
the denoising process, latents are decoded by a transparent
decoder to produce a sequence of transparent foreground
frames. In cases where additional foreground elements are
present, the Harmony-Consistency Bridge manipulates con-
trol signals to enable a two-stage conditioned generation ap-
proach. Ultimately, all generated foregrounds are layered
onto the background and passed through a harmonizer for
texture refinement, rendering a cohesive multi-object scene
with versatile motion control.

3.2.1. Layered Video Synthesis

As mentioned in 3.1, the VAE in the image generation pro-
cess can be reused in the video domain, and [53] trains
transparent LoRAs that adjust latent distribution to support
alpha channel and an additional VAE to support transparent
image encoding/decoding. We adopt the pre-trained mod-
ules in [53] with its LoRAs and decoder D besides the orig-
inal decoder D* and inflate it into video generation model
to enable transparent video synthesis. Suppose x is the la-
tents denoised by a pretrained UNet. By fine-tuning with
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Figure 2. The overall structure of the LayerT2V. This pipeline supports both background video generation and multiple foreground
video layers generation. We propose a Layer-Customized Module to control the motion trajectories of the subjects with background
conditioned generation. The proposed Harmony-Consistency Bridge coordinates consistency between Layer 2 and Layer 1. In stage one,
only background frames are input into control convolutions, while in stage two, both background frames and Layer 1 are incorporated.

a dataset of transparent images, denoising UNet can ob-
tain an adjusted latent x, = x + x. with an offset x, in
a modified latent space for transparent frames. The de-
coded RGB reconstruction can be denoted as I = D*(x,),
thus the reconstruction of RGBA frames can be denoted as
[fc, fa] = D(f, X, ), where I.and I, represent the RGB and
alpha values respectively.

To enable background conditioned generation, we first
utilize the base T2V model to generate background video
b with f frames and input noisy latents x = [x/"¢ xB¢]
with shape [f, 2, h, w, ch] which represents a combination
of foreground latents x"“ and background latents x2¢ in
denoising process. Here h, w, ch represent the height,
width, and number of channels, respectively. Then, we use
control convolutions to embed b into xP¢. To formulate,
our background conditioned generation is based on the fol-
lowing transforms

xBY « xBY @ Conv(b). 2)

Given the bbox sequence B = [B1, By, . .., By], we have

X(—1) = Up (X(p), €, b, B). 3)

Here Uy represents the backbone video diffusion UNet in-
corporated with transparent LoRAs.

3.2.2. Layer-Customized Module

We carefully designed our Layer-Customized Module
(LCM) to achieve our goal of handling multi-object sce-
nario generation while preserving harmony and consistency
between multiple layers. LCM has two vital components,
guided cross-attention and oriented temporal-attention. In
guided cross-attention, we use an attention map injection
method with key-frame amplification to align the motion of
the output transparent layer with the given bbox sequence.
In oriented temporal attention, we separate it into attention-
sharing with masks at frame-pixel-wise level and attention-
isolation. The former is to enable foreground (FG) latents

to maintain consistency with background (BG) latents, like
rendering illumination, shadow effects, or color harmony.
The latter is to avoid transparent latent distribution, which
was offered by transparent LoRA, being disrupted.

Guided Spatial Cross-Attention. Spatial cross-attention
plays an essential role in T2V generation, as it serves as the
only pathway for the prompt to embed into the latent repre-
sentations. Therefore, it is crucial to thoroughly investigate
methods to steer spatial cross-attention towards our desired
outcomes. Rather than using a linear additive mask, we em-
ploy a Gaussian function to smoothly construct an additive
mask corresponding to the bbox area with an influence coef-
ficient )\, allowing it to guide without negatively disrupting
the attention values, thereby preserving the quality of gen-
erated content.

In addition, for complex trajectories, simple guidance
may not suffice to achieve precise bbox—prompt alignment.
To address this, we introduce the concept of key-frames.
For example, in a polyline trajectory, the start point, end
point, and turning point determine the overall movement of
the object and are critical to bbox—prompt alignment. Con-
sequently, we amplify the additive mask of these key-frames
by a reinforcement parameter ey to ensure more effective
guidance. For each frame fy € [f], we have a bbox B € B
and foreground prompt embeddings c . Given query () de-
rived from visual tokens, key K and value V' mapped from
text embeddings, the guided cross-attention is formulated as

CrossAttn(Q, K, V) = (Softmax(A(Q, K)) + AM)V.
“)

Here

A[i’j]_{QKT/\/E—oo, if (i, 7) € ®(1), )

QKT /V/d, otherwise,

where ®(n) = {(¢,j)|I[i € B]+1I[j € cp] =n},Iisa
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Figure 3. Layer-Customized Module with its three major com-
ponents: Guided Cross-Attn, Oriented Attn-Sharing, and Attn-
Isolation.

boolean indicator, and

M ] = {QB(iaj)"Y(fo)a if (i) € 0@2), o

0, otherwise,

where gp is a Gaussian weight [24] within bbox B, v(fy) =
Ykey > 1if fo is a key-frame, otherwise y(fo) = 1.
Attention-Sharing and Attention-Isolation. Similar to
most UNet-based video diffusion models equipped with
spatial attention and temporal attention, our network basi-
cally adopts the same methodology but divides the tempo-
ral module into two parts: Attention-Sharing and Attention-
Isolation. The latents x will be processed by these se-
quences of spatio-temporal modules. For easier illustration,
we only list the core components, Temporal Transformer
(TT) and Spatial Transformer (ST), in the pipeline to for-
mularize the denoising process at time step ¢ as

X(t—1) < TTal(TTas(ST(x(), €))), (7N

where the subscripts Al and AS denote attention-isolation
and attention-sharing, and c indicates the prompt embed-
dings. Furthermore, we design our TTx; and TT g as:

SelfAttn(x[}S),

TT, = s ®)
SelfAttn(x /7).

TTas = SelfAttn([xI"%, x2]) e, ©

where x{}]G, X[B}]G denote the separate concatenation of FG
and BG latents respectively, and [x/'¢ xP¢] is the com-
bined concatenation of FG and BG latents for i-th frame.
As shown in Figure 3, we aggregate all FG and BG latents
for frame-pixel-wise attention sharing and then isolate them

to perform cross-frame attention.

Oriented Attention-Sharing. In our layer generation
framework, the fusion of foreground and background is a
critical focus. We aim to avoid a scenario where the fore-
ground layer appears to “float” above the background layer

without interactions, thereby losing visual concordance. To
address this, we introduce an orientation step within the
attention-sharing process, guiding foreground pixels inside
the bbox to attend more closely to their corresponding back-
ground pixels as illustrated in Figure 3. Formally, for frame
fo and its bbox B, given query @, key K, value V in tem-
poral attention,

T

AttnSharing(Q, K, V) = (Softmax(QK

) eWB)Y

(10)

where ® denotes the Hadamard (element-wise) product that
scales the foreground and background elements in attention-
sharing maps: For each frame fy, and each latent pixel
(z,y), the corresponding frame-pixel-wise element W(B)
can be formulated as

p if (z,y) € B,i = j,
WB)i,j] = q e if (z,y) € Byi#4, (1D
1 otherwise.

Here w1, 2 > 1 applied to cases “¢ = j” and “i # j”
are two coefficients to strengthen the attention inside bbox
area, and the influence of the interaction of foreground and

background respectively.

3.2.3. Harmony-Consistency Bridge

We discover that due to the training process of transpar-
ent module [53] is demonstrated on {text, foreground layer,
background layer} pairs with a single object in the fore-
ground layer, the attention sharing will have an extremely
negative impact on the newly generated layer if its trajec-
tory is collided with previously generated foreground layer.

Assuming we have a background layer (BG) and the first
foreground layer (FG1), we blend them and feed this com-
bined background signal into our pipeline to generate the
second foreground layer (FG2), where FG1 and FG2 ex-
hibit substantial motion collision. Under this circumstance,
FG2 tends to focus on the motion and texture of FG1 as-
cribed to attention-sharing, potentially leading FG2 to adopt
a similar pattern to FG1. Also, the collision between dif-
ferent foregrounds can disrupt the transparent latent distri-
bution. Based on this observation, we propose a Harmony-
Consistency Bridge (HCB) to tackle the temporal redundant
consistency between different foregrounds. Since the early
steps of the denoising process generate coarse layouts that
critically influence the object’s motion [49], HCB first con-
ditions the denoising solely on the background layer to en-
sure accurate motion information. Then, it conditions all
previously generated layers to ensure seamless integration
of the new layer with the existing content. In summary,
there will be two stages in the HCB. Suppose we have ob-
tained BG layer and (¢ — 1) FG layers, denote timestep as
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Figure 4. Qualitative comparison on colliding object motion control with current SOTAs. Our method excels in handling cases involving
more than one object with colliding motion. Furthermore, we take both static trajectory and moving trajectory into account and showcase

that LayerT2V outperforms others.

Methods Quality Semantic Fidelity Trajectory Control
FID(]) FVD{) CLIPSIM(T) Preference(T) mloU(T) AP50(T) Cov(T) CD{)
MotionCitrl [46] 153.27 1516.27 30.18 2.22% 6.97 3.04 0.83 0.16
Peekaboo [20] 147.49 1436.12 30.45 2.78% 10.43 0.97 0.84 0.14
Direct-a-Video [51] 140.14 1380.79 29.19 6.67% 12.64 2.05 0.75 0.13
LayerT2V(Ours) 136.12 1356.38 32.47 88.3% 30.12 16.62 1.00 0.05

Table 2. Quantitative comparison on colliding object motion control with related baselines. Our LayerT2V outperforms competing ap-
proaches in multi-object motion scenes, achieving impressive improvements of 1.4 x in mloU and 4.5 in AP50, while maintaining 100%
semantic integrity without compromising video quality. [Bold text: Best; Bold red text: Best and significantly surpass others]

t, and t. determines the timestep to transfer to the second
stage. For the i-th FG layer, during the first stage (¢t > t.),

x-1) = Up (X1, €, b), 12)
and for the second stage (¢ < t.),
x(¢—1) = Upr (X(t)a c,bofg,o---ofg, ;). (13)

Here o denotes blending operation for layers and b o fg; o
---ofg, ; isthe blending of previously generated layers.

4. Experiments

In this section, we present both qualitative (Sec.4.2) and
quantitative (Sec.4.3) analysis for LayerT2V, mainly con-
centrating on the scenario in which the motion trajectories
of multiple objects are colliding.

4.1. Settings

Based on our investigation in Table 1, we compare our Lay-
erT2V to three leading methods: MotionCtrl [46], Direct-
a-Video [51] and Peekaboo [20]. Peekaboo manipulates
spatial-temporal attention outputs and is originally imple-
mented to control a single object. We directly sum multi-

ple bbox sequences into one as the input mask for Peeka-
boo. Pursuing a justified comparison, we implement these
methods all in SDv1.5 UNet-2D backbone inflated with
the transformer temporal module of AnimateDiff [11]. Af-
ter obtaining the transparent frames, we can easily obtain
the foreground mask by selecting regions in the alpha map
where the alpha values are close to the maximum value
of 255. Then we pass the blended frames through INR-
Harmonization [8], which enables masked pixel-to-pixel
harmonization via continuous image representation. We
will provide further explanations in appendix.

For object motion control, we curate 20 trajectory com-
bos with two to three trajectories each and generate samples
using these combos to perform qualitative and quantitative
evaluations. For each trajectory combo, we evaluate 10 to
12 different {background prompt, foreground prompts} lay-
ered inputs with reasonable semantics between layers.

4.2. Qualitative Analysis

The visualized comparison in Figure 4 reveals that Lay-
erT2V can generate multiple objects whose movements are
both static and dynamic, or colliding both partially and
completely. Without compromising video quality and har-
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(b) Uniformly applying OAS disrupts the latent distribution. In contrast,
the proposed method improves motion control and harmony. In these ex-
amples, the bear darkens naturally under tree shade, and the boat’s reflec-
tion aligns remarkably well with the lake, enhancing content realism.

Figure 5. Visualized effects of Key-Frame Amplification (KFA)
and Oriented Attention-Sharing (OAS).

mony between different layers, our models are capable of
blending the foreground seamlessly into the background.
For instance, in the 8th column in Figure 4, where we first
generate a pond in a park, and then we discover that the
subsequently generated stone and duck have some inverted
reflection and fit in well with the pond.

Additionally, when two objects collide, baseline models
tend to encounter two challenges: semantic mixing and ab-
sence [51]. Semantic mixing refers to the incorrect assign-
ment of prompt attributes to different objects. This is ex-
emplified in the 7th column, where the texture of the duck
mixes with the stone, and the 9th column, where the carp
in the first few frames ultimately transforms into a jellyfish.
Semantic absence, a known limitation in T2V models [7],
arises when an object fails to appear as expected. For in-
stance, in the 2nd, 3rd, and 10th columns, only one main
object appears and the other foreground is missing, leading
to huge discordance with prompts. In contrast, our method
effectively mitigates these issues, enabling improved con-
trol over the motion of multiple foreground objects.

Methods | FID(J) CLIPSIM() mloU(1) CD(})
KFA forall | 162.28 30.34 27.30 0.11
W/oKFA | 140.70 30.27 26.65 0.12
KFA 136.12 3247 30.12 0.05

(a) We evaluate the effectiveness of key-frame amplification in three as-
pects: frame quality, semantic similarity and bbox-object alignment.

Methods | Preference(f) CLIPSIM(T) mloU(T) CD()
W/o OAS 5.3% 31.71 27.54 0.08
OAS 94.7% 3247 30.12 0.05

(b) Compared to the quality of the video itself, OSA has a greater impact
on the aesthetic value created by the integration of the foreground layer
with the background. Thus we conduct a user survey with 15 volunteers to
calculate user preference.

Table 3. Quantitative evaluations for Layer-Customized Module.

1d

1d

Figure 0. . Depth conflicts; . Texture mixing; : Dis-
ruption of transparent latent distribution; Row4: Harmonious multi-object
scenes (Ours).

Methods | FID(J) FVD(]) CLIPSIM(}) mloU(}) CD()
Solely BG | 138.94 1434.36 3212 2028  0.05
Solely BL | 14131 1619.51 28.55 2190  0.10
HCB 136.12  1356.38 3247 3012 0.05

Table 4. Quantitative evaluations for HCB. Here BL stands for blended
conditional information, where we integrate all of the previously generated
layers into control convolutions.

4.3. Quantitative Analysis

Evaluation Metrics. We thoroughly perform the evalua-
tion in three aspects: video quality, semantic fidelity, and
trajectory control. (1) The quality of the generated videos is
evaluated using Fréchet Inception Distance (FID) [37] and
Fréchet Video Distance (FVD) [41], which are two com-
monly used metrics for video quality assessment, against
the random selected 800 videos in AnimalKingdom [28]
dataset. (2) We calculate CLIP Similarity (CLIPSIM) [33]
between overall prompts and video frames, which measures
the semantic similarity between the input prompt and the
generated video. Besides, we conduct a user study involv-
ing 15 participants, where each sample set consists of four
videos generated under the same settings by four methods.
Participants were asked to select the best result based on
three dimension: (i) Semantic integrity, (ii) semantic clarity,
and (iii) alignment with the prompt. (3) We utilize OWL-
ViT-large [26] to evaluate the motion trajectory control and
corresponding four metrics following the methodology in
Jain et al. [20]: Coverage (Cov), mean of Intersection-
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Figure 7. More iterations. We present a case to show the ability of LayerT2V to handle multiple object generation iteratively. For

convenience, we use arrows to replace bounding boxes.

over-Union (mloU) against the input boxes, Centroid Dis-
tance (CD) and average precision at 50% IoU threshold
(AP50). Here, Cov and CD represent the fraction of gen-
erated videos that the bboxes detected in more than half of
the frames and the distance between the centroid of the gen-
erated subject and input mask, respectively.

Colliding Motion Control. We assess colliding motion for
multi-object scenarios and report the evaluation results in
Table 2. Baseline models generally display two main issues
when handling multi-object colliding motion control: (1)
the generated output deviates significantly from the prompt,
or only a subset of the subjects specified in the prompt are
rendered, leading to substantial declines in CLIPSIM and
user preference; (2) ineffective trajectory control, where
subjects frequently fail to adhere to the prescribed mo-
tion paths. Our model overcomes these limitations impres-
sively, adhering strictly to the semantics and trajectories of
conditioned information. Notably, our model outperforms
all baselines across all Semantic Fidelity and Trajectory
Control metrics. Without compromising video quality, our
model slightly surpasses the others in FID and FVD, show-
ing strong capability for colliding motion control.

4.4. Ablation Study

With respect to the trajectory customization part of LCM,
we find out that the absence of key-frame amplification or
simply applying key-frame amplification to all frames will
cause the degradation of object localization and the cor-
rectness of alpha values. Visualized results can be found
in Figure 5a and the quantitative analysis is present in Ta-
ble 3a. Similarly, Figure 5b suggests the ability of oriented
attention-sharing to achieve harmonious blending between
layers. Since shadow, reflection, and illuminating are more
about the aesthetic values of a video, we conduct user stud-
ies within 15 volunteers and collect their preference based
on: 1) layer quality; 2) bbox alignment; 3) blending harmo-

Figure 8. Layer transplantation demonstrates that our model has a
wide range of promising application scenarios.

nization, and report the average preference in Table 3b. Fur-
thermore, other than our proposed HCB module, we simply
feed the pure background layer or the blending of all the
previous output layers as the control signal. In Figure 6, we
fix the background and the first foreground while adjust-
ing the methods to synthesize the second foreground. We
observe that solely using the background layer can lead to
depth conflicts between foregrounds, while using only the
blending may disrupt transparent latent distribution or cause
texture mixing. Quantitative results are reported in Table 4.
Extensive Blending. The inherent capability of layer gen-
eration enables the iterative creation of additional video lay-
ers. By strategically providing appropriate bbox sequences
and prompts, informed by the semantic context of the gen-
erated background, we can generate complex multi-object
motion patterns, as demonstrated in Figure 7. This repre-
sents a significant advancement over traditional T2V mod-
els, which are limited in controlling multiple objects.
Layer Transplantation. We have observed that generated
layers, even when lacking specialized attributes like reflec-
tions, can offer significant practical value for transplantation
to other videos. Moreover, the transparency of these gen-
erated layers allows for flexible scaling, repositioning, and
seamless overlay onto diverse backgrounds. This versatility,
akin to techniques employed in video editing, is illustrated
in Figure 8.

Interactions between foregrounds. Our primary goal is to



address colliding motion control in T2V. Each foreground is
generated independently if they exist at different depths. If
interactions within the same depth are desired, they can be
achieved by grouping multiple objects together and generat-
ing these foregrounds simultaneously. This approach can be
seen as an extension of LayerT2V and is illustrated in Fig. 9.
For example, in the first line, initially, the ball occludes
the dog (highlighted in ); subsequently, the dog oc-
cludes the ball (highlighted in blue). However, this method
presents instability, which will be discussed in Sec. 5. Se-
mantic conflicts in overlapping regions intensify attention
competition among different objects, sometimes leading to
failures in generating all intended objects.

Figure 9. Interaction within the same depth: (1) “A dog is chasing
a ball”, these two FGs are combined into a group and synthesized
together; (2) “Two gentlemen shake hands”, these two FGs are
combined and generated together without explicit bbox prompt.

5. Limitations and Future Work

Figure 10. Limitations caused by semantic conflicts between bbox
and background.

The foreground generation of LayerT2V depends on back-
ground features, so mismatches between bboxes and back-
ground semantics can degrade quality and produce unreal-
istic outputs. This can be mitigated by providing control
conditions that align more closely with the background. For
instance, in Figure 10, our bbox sequence extends from the
beach to the distant sea and sky, which significantly violates
the semantic consistency of the background. This situation
will result in an unnatural appearance.

Moreover, it is worth noting that the experimental T2V
backbone employed in our work is somewhat outdated,
which significantly constrains the visual quality and over-
all capability of our model. As part of our future work, we
plan to implement the proposed approach on more recent
DiT-based models. This upgrade is expected to enhance

resolution, improve video quality, reduce artifacts and hal-
lucinations, and achieve better motion consistency.

6. Conclusion

This paper presents LayerT2V, the first T2V model adopts
the methodology of video layering. By overlaying coherent
transparent video layers onto a pre-generated background,
LayerT2V addresses the challenge of controlling multi-
object motion trajectories, especially in handling colliding
motions. Experimental evaluations show 1.4-fold and 4.5-
fold improvements in the mIoU and AP50 metrics for mo-
tion control over current SOTA and significant gains in other
metrics. In summary, LayerT2V provides a novel solution
for generating complex multi-object interaction scenes.
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LayerT2V: Interactive Multi-Object Trajectory Layering for Video Generation

Supplementary Material

A. Implementation Details

Control signal input for different methods. A bbox se-
quence is primarily determined by several key-frames, with
intermediate bboxes obtained through interpolation. This
bbox sequence is then scaled to match the correspond-
ing latent space dimensions (h',w’) and processed us-
ing attention weight injection (for LayerT2V and Direct-a-
Video [51]) or masking (for Peekaboo [20]). For MotionC-
trl [46], we calculate the centers of the bbox sequence to ob-
tain a point sequence and use the provided scripts to gener-
ate motion vectors as conditions. For a fair comparison, all
methods are implemented on SDv1.5 inflated by Animate-
Diff [11], which introduces temporal transformer modules
to the text-to-image backbone.

Masked harmonization. After generating the transparent
frames, the alpha values («) at foreground pixel locations
are typically high (generally close to maximum 255), while
non-foreground regions may still retain small alpha values
rather than being fully transparent (e.g., = 10). There-
fore, we first apply a threshold-based filtering process to
these frames, resetting regions with very small alpha values
to a = 0. This allows us to easily obtain the foreground re-
gion mask from the alpha map. Next, we input the blended
frames and foreground masks into INR-Harmonization [8],
which enhances the alignment between the foreground and
background through pixel-to-pixel processing and improves
texture realism, as shown in Fig. 13.

Generate binary mask from alpha map

v

Pixel-to-Pixel

Harmonization

Figure 13. Illustration of masked harmonization.

The generated videos for evaluation have a resolution
of 256 x 256 and a length of 16 frames. The common
values of cross attention guidance scale A and key-frame
amplification scale 7., are 2.5 and 1.2. The common
values of attention sharing guidance scale ;3 = 1.5 and
o = 2.0. Additionally, Guided cross-attention and ori-
ented attention-sharing, are methods delving into attention
map guidance [1, 5, 9, 30] and will disrupt the latent distri-
bution if we apply them through the entire inference stage.
Thus these two methods are only applied in the first 10%
and 50% of the inference steps respectively and the num-
ber of total inference steps is 50. Noted that our foreground

generation should be based on the semantics of the back-
ground video, thus for each trajectory-combo, we first gen-
erate backgrounds that fit with the semantics of the bbox-
prompt pairs, then continuously generate foregrounds upon
the backgrounds.

Further comparisons with other bbox-based methods.
Boximator [43] is a training-based approach that requires
extensive training to achieve fine-grained motion control.
Peekaboo [20] and TrailBlazer [24] generally add complex
attention masks to multiple of spatial-, cross-, and temporal-
attention, which can degrade video quality to some extent
due to massive intervention in inference stage. The con-
trol module of Direct-a-Video [51] is similiar to ours, but it
solely relies on the size of bbox to determine attention map
edits. In contrast, our method, despite being applied within
a complex layer generation pipeline, remains relatively sim-
ple in motion control but remarkably efficient and effective,
as shown in Table 2.

B. Evaluation Details

B.1. Metrics Calculation

1. The reference set used for FID [37] and FVD [41] is
800 videos randomly selected from AnimalKingdom [28].
These videos will be cropped and resized to the same reso-
lution to calculate the evaluation scores.

2. For metric CLIPSIM [33], we calculate the sample with
overall conditional prompt, for example, if our layered in-
puts are organized as (a) “a jellyfish swimming” (b) “a carp
moving” (c) “a coral reef”, then the prompt for calculating
the CLIPSIM will be the overall prompt “a jellyfish swim-
ming, a carp moving, a coral reef”.

3. For user preference regarding semantic fidelity, we in-
vited 15 participants to select the best result from four dif-
ferent methods based on the following criteria: (i) Semantic
Integrity — whether the generated video fully covers the re-
quested content. For example, if the prompt specifies multi-
ple objects but some are missing, or if a specific background
is required but not generated, the result does not meet this
criterion. (ii) Semantic Clarity — whether any generated ob-
jects lack clear semantic definition. If an object appears
mixed with the texture of other subjects, it fails to satisfy
this criterion. (iii) Overall Alignment with the Prompt —
whether the generated content as a whole closely adheres
to the input prompt. Based on these aspects, participants
selected the result they considered the best.

4. For the metrics mloU, AP50, Cov, and CD [20] cor-
responding to trajectory control capability, we separately
record the bbox-object alignment between each bbox se-
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Figure 11. Additional result of multi-object motion control. The result shows five synthesized video sequences with either non-colliding

or colliding multi-object motion control.

quence and its corresponding object in a trajectory-combo.
Ultimately, all evaluation scores are averaged to produce the
final score.

B.2. Prompts and Bboxes

Here we use the notation “Itpl(bboxy,bboxa,n1,n2)” to
represent the interpolation results for bbox; in frame n, and
bboxs in frame ny. And we provide some examples of the
bbox-prompt combos we have used for evaluation, which
are organized as {Background Prompt, Foreground Prompt
1, Foreground Bboxes 1, Foreground Prompt 2, Foreground
Bboxes 2, ... (if any)}, as follows:
¢ BG: “a coral reef in the ocean”
FG1: “a clownfish swimming in the ocean”
Itpl([0.7,0.6,0.9,0.8],[0.1,0.6,0.3,0.8], 1, 16)

FG2: “a crab climbing from left to right”
Itpl([0.1,0.7,0.3,0.9],[0.7,0.7,0.9,0.9], 1, 16)

BG: “beautiful bright snow field with a snow mountain
in the distance”

FGI1: “a polar bear walking on the snow”

Itpl([0.03, 0.36,0.29, 0.66], [0.67,0.26,0.97,0.58], 1, 8)
Intl([0.67,0.26,0.97,0.58],[0.36,0.63,0.67,0.98], 8, 16)
FG2: “a drone flying in the sky, behind snow mountain”
Itpl([0.67,0.59,0.97,0.88],[0.03,0.59, 0.32,0.88], 1, 16)
BG: “a cozy room with a colorful rug”

FGI1: “a corgi running in the room”

Itpl([0.06, 0.40, 0.31, 0.64], [0.37,0.70, 0.64, 0.96], 1, 9)
Itpl([0.37,0.70,0.64,0.96], [0.66,0.39,0.97,0.63], 9, 16)
FG2: “a ball rolling on the carpet”

Itpl([0.69, 0.68,0.93,0.94], [0.06,0.47,0.30,0.71], 1, 16)
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Figure 12. Further comparison on colliding object motion control with other methods. The prompt for the group above is “A robot and a
corgi running on the beach”, for the group below is “A man walking and a corgi running on a quiet beach”.

C. More Results
C.1. Multi-Object Motion Control

In Figure 11, we present additional results of multi-object
video customization, including some cases where the con-
trol information corresponds to colliding motions. In Fig-
ure 12, we present additional comparisons against other
control methods. It is observed that LayerT2V demon-
strates exceptional capability in generating multi-object
scenes, addressing the limitations of traditional T2I/T2V

models in handling multi-object generation [6]. This high-
lights a potential application:

Any image or video generation model trained on
single-object datasets can adopt our methodology to
enable support for multi-object scenes.

This paradigm eliminates the dependence on multi-object
training data while enhancing the model’s generative capa-
bilities and diversity.
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Figure 15. Samples generated by base model using complicated multi-object prompts. Given prompts from top to bottm: “a bear and a

corgi in a forest”, “a horse running on grassland, an eagle flying in the sky”, “a horse and a deer running on grassland”. The left part shows
semantic absence, while the right part showcases semantic mixing.



Figure 16. Additional results of Key-Frame Amplification (KFA). The prompts used in the four sets of the experiments are: “a corgi

ELINTS

swimming in the ocean”, “a corgi running in the room”, “a corgi running back and forth on the lawn”. Left: With KFA; Right: W/o KFA.

C.2. Alpha Masks of Foregrounds

To better illustrate the transparency relationships between
multiple layers of objects, we visualize the alpha masks of
each layer as well as the blended alpha mask of the fore-
ground objects for one set of results. The visualization is
presented in Figure 14.

C.3. More Results of Key-Frame Amplification

We provide additional experiments to demonstrate the im-
portance of Key-Frame Amplification (KFA), focusing pri-
marily on complex trajectories, which refer to polyline
paths with one or more intermediate turning points. The
results in Figure 16 show that our model enables more so-
phisticated customization of the foreground object’s trajec-
tory.

C.4. More Results of Oriented Attention-Sharing

We present additional results of the proposed Oriented
Attention-Sharing (OAS) mechanism in Figure 17. OAS
effectively enhances the realism of the generated fore-
ground while ensuring better harmony with the background.
Specifically, in the first example, the reflection of the gener-
ated “duck” is remarkably consistent, adding to the scene’s
overall realism. In the second example, our generated re-
sults appear highly realistic, whereas the toy car in the com-
parison appears to be floating unnaturally. In the third and
fourth examples, the shadows and illumination effects in
our results create a more authentic appearance, significantly
elevating their aesthetic value.

C.5. More Results of Harmony-Consistency Bridge

The Harmony-Consistency Bridge (HCB) is specifically de-
signed to handle scenarios with multiple input layers. When
dealing with cases that include not only a background layer
but also additional foreground layers, the subsequent layer
must attend to all existing layers to maintain coherence and
harmony across the composition. This ensures that interac-
tions between layers, such as lighting, shading, and spatial
alignment, are handled consistently.

Typically, the value of ¢. in Equation 13 is usually set
to 0.5 x T, which balances the contributions from previous
layers to guide the generation of the upcoming layer. This
strategy ensures that each new layer integrates seamlessly
with the already generated content, enhancing the realism
and overall quality of the scene. Additional experimental
results demonstrating the effectiveness of HCB are provided
in Figure 18.

C.6. Observations of Base Model

Our base model is built upon Stable Diffusion with Ani-
mateDiff [11]. To evaluate its capability in handling multi-
object scenes, we conducted tests and present results in Fig-
ure 15. As demonstrated, the base model always exhibits
the two issues discussed in Sec. 4.2. when processing com-
plex prompts: Semantic Absence [6] (left part of Figure 15)
and Semantic Mixing (right part of Figure 15). This high-
lights the ability of our model to surpass the limitations of
T2V models in generating multi-object scenes or handling
complex prompts, producing content with richer semantics.



A\ . . "
A toy car moving, in a cozy room

“A polar bear walking, on an iceland”

Figure 17. Additional results of the effects of Oriented Attention-Sharing (OAS). The upper row is the results of OAS and the lower one is
the results for which we eliminate the OAS. We could see the shadow effects and illumination with our proposed methods is much more
harmonious than those without OAS.



Figure 18. Additional results demonstrating the effects of the Harmony-Consistency Bridge (HCB). In each group of frames, the first row
represents our results, the second row shows results generated using only the background, and the third row displays results produced using
only blending. In the first group, the background is fixed with a horse, and the input is “a zebra walking on the grass”. In the second group,
the background is fixed with a robot, and the input is “a corgi running on the beach”.



	Introduction
	Related Works
	Text-to-Vision Generation
	Controllable Motion in Video Generation
	Methodology
	Preliminaries: Video Diffusion Models
	LayerT2V
	Layered Video Synthesis
	Layer-Customized Module
	Harmony-Consistency Bridge

	Experiments
	Settings
	Qualitative Analysis
	Quantitative Analysis
	Ablation Study

	Limitations and Future Work
	Conclusion
	Implementation Details
	Evaluation Details
	Metrics Calculation
	Prompts and Bboxes
	More Results
	Multi-Object Motion Control
	Alpha Masks of Foregrounds
	More Results of Key-Frame Amplification
	More Results of Oriented Attention-Sharing
	More Results of Harmony-Consistency Bridge

	Observations of Base Model





